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OPERATING ON FUNCTIONS WITH VARIABLE DOMAINS ' 
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ABSTRACT. The sum. difference, product and quotient of two functions with different 
domains are usually defined only on their common domain. This paper extends these 
definitions so that the sum and other operations are essentially defined anywhere that at 
least one of the components is defined. This idea is applied to propositions and events, ex- 
pressed as indicator functions, to define conditional propositions and conditional events as 
three-valued indicator functions that are undefined when their condition is false. Extended 
operations of "and", "or", "not" and "conditioning" are then defined on these conditional 
events with variable conditions. The probabilities of the disjunction (or) and of the con- 
junction (and) of two conditionals are expressed in terms of the conditional probabilities of 
the component conditionals. In a special case, these are shown to be weighted averages of 
the component conditional probabilities where the weights arc the relative probabilities of 
the various conditions. Next, conditional random variables are defined to be random vari- 
ables X whose domain has been restricted by a condition on a second random variable Y. 
The extended sum, difference, product and conditioning operations on functions are then 
applied to these conditional random variables. The expectation of a random variable and 
the conditional expectation of a conditional random variable are recounted. Theorem 1 
generalizes the standard result that the conditional expectation of the sum of two con- 
ditional random variables with disjoint and exhaustive conditions is a weighted sum of 
the conditional expectations of the component conditional random variables. Because of 
the extended operations, the theorem is true for arbitrary conditions. Theorem 2 gives 
a formula for (he expectation of the product of two conditional random variables. After 
the definition of independence of two random variables is extended to accommodate the 
extended operations, it is applied to the formula of Theorem 2 to simplify the expectation of 
a product of conditional random variables. Two examples end the paper. The first concerns 
a work force of n workers of different output levels and work shifts. The second example 
involves two radars with overlapping surveillance legions and different detection error 
rales. One radar's error rale is assumed to be sensitive to fog and the other radar's error rate 
is assumed to be sensitive to air traffic density. The combined error rate over the combined 
surveillance region given heavy fog anil moderate air traffic is computed. 

KFY WORDS: conditional, conditional expectation, domain, functions, operations, ran- 
dom variable, three-valued 
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i. INTRODUCTION 

From elementary mathematics, we are all familiar with the definitions 
of the operations of addition, subtraction, multiplication, and division for 
real-valued functions defined on a common domain D. For each domain 
element x, the sum function, (/ + g), is simply assigned the value (/ + 
g)(x) — f(x) + g(x), the sum of the values of / and g at x, and similarly 
for the other operations. However, function division, {f/g), requires an 
extra condition, namely that g(x) not be zero, so that the division can be 
performed. So {f/g) is said to be "undefined" for any domain values x 
for which g(x) = 0. Thus already the division operation on functions 
generates new functions that have restricted domains, and in general such 
divisions will generate functions having different domains of definition. 
This leads to the standard definition of operations on functions whose 
domains are different: If /' and g are defined on D and E respectively, 
then the sum function (/' + g) is defined on the intersection of D and E as 
follows: 

(i)     (/ + g)(*) = [/wj-*w   lx*DnE> 
•'     s I Undefined       if* £ DHE. 

The difference, product and division functions / — g, f * g, and f/g are 
similarly defined when D and E are the domains of / and g respectively, 
but again the quotient (f/g) is also undefined on any zeros of g. Since 
a summing of / and g cannot be performed for a given domain value x 
unless both / and g are defined at x, this has seemed to be a reasonable 
definition, and there has been no reason offered to do it in any other way. 

2. EXTENDED OPERATIONS OF SUM, DIFFERENCE AND PRODUCT 

ON REAL-VALUED FUNCTIONS 

However, recent developments in conditional event algebra |2, 5] suggest 
that there is good reason for expanding the domain of the sum function to 
include all values of x that are in at least one of the two domains. Using 
the set theory notation D' to denote the complement of /), the definition of 
the sum function (/ + g) can advantageously be extended to: 

f(x) + g(x) if* e on E, 
fix) if.v € DUE', 
gW if JC e D'DE, 
Undefined if .v e D'n E'. 

(2)        (/ + *)(*) = 

In other words, here the sum function takes the value of f(x) if g(x) is 
undefined, and takes the value g(x) if /(.v) is undefined. It then agrees 



OPERATING ON FUNCTIONS WITH VARIABLE DOMAINS 3 

with the old definition on the restricted domain D P E and is undefined 
only on the region outside of D U E. The other operations on functions. 
(./ — g)> (./ *g) and (//#) can be similarly defined. The product (/ * g) is 
completely analogous to the sum with * in place of +. The difference is: 

(3)        {f-g)(x) 

fix) - gix) 
fix) 
-gix) 
Undefined 

if x e DP /-;. 
if.v e DDE', 
if .v e D'PE. 
if.v e D'PE'. 

The quotient is analogous to the difference: 

(4)        if/g)ix) 

[ fix)/g{x) if.v e D P E and gix) / 0, 
/(A-) if.v e DP £", 

1 /gO) if .v e D' D E and ,e(.v) ^ 0. 
Undefined if.v e D' n £" or g(x) = 0. 

Note that although it is possible in the sum case, for example, to redefine 
the two functions / and g to be zero instead of undefined and thereby 
eliminate the need for the extended operations, a subsequent desire to lake 
the product instead of the sum would require another redefinition. Other 
advantages are exhibited below. 

3.  PROPOSITIONS, EVENTS AND INDICATOR FUNCTIONS 

These kinds of extended definitions have been shown |2. 4, 5| to be useful 
when defining Boolean-like operations on uncertain conditional proposi- 
tions or conditional events whose conditions arc different. 

In a similar vein restricted indicator functions, and their closure un- 
der finite addition, have been used successfully by Suppes and Zanotti 
[ 13, p. 10], or 112] to define a qualitative relation between pairs of events 
characterizing the conditional probabilities and conditional expectations of 
such pairs of events and allowing comparison of conditional probabilities 
or conditional expectations even when the conditions on the events arc 
different. 

For Boolean propositions or events A and II we have familiar and stan- 
dard operations of "and" (A), "or" (V), and "not" (->) corresponding to 
multiplication (*), summation (+), and negation (—) respectively, and also 
corresponding to intersection (D), union (U), and complement (') in the 
event interpretation. There has been no standard definition of division of 
propositions or events but now "conditioning" has been recognized to be 
division. See, for instance, |6|. 
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A proposition A can be represented as a measurable indicator function 
fA defined on the universe £1 and taking the value 1 for co e A and 0 for 
(o £ A': 

(5) JA(o)) = \ , 
| (),    co e A . 

With this representation, the standard operations on propositions or events 
can be expressed in terms of function operations. For instance the nega- 
tion (') of an event A, which is simply the function that is 0 on A and I 
on A', can be expressed as (fa — fA) the universal proposition minus fA. 
The disjunction (v) of two propositions fA and fg defined respectively on 
domains A and B is the indicator function fA\jB defined by 

(6)       IAVB(W) 
1,    coe(AUB), 
0,    co<E(AU B)'. 

This disjunction (v) of two propositions A and B can be expressed as the 
maximum max(//\, /«) of the two indicator function fA, and /g. Similarly 
conjunction (A) is min(/i, //,•). For notational simplicity, a proposition 
fA will be denoted simply as "A" but will retain the indicator function 
meaning. 

The probability P(fA) of a proposition or event fA is defined to be 
P(A), the probability of the P-measurable event A on which / takes the 
value 1. So P(fA) = P(fA = 1) = P(fA

](D) = P({co e Q : /A(w) = 
1}). 

4. CONDITIONAL PROPOSITIONS, EVENTS AND RESTRICTED 

INDICATOR FUNCTIONS 

Following De Finetti |8] a conditional (A\B), '"A given B" or 'M if />'", is 
an ordered pair of propositions or events with three possible truth states: 
(A\B) takes the truth value of A when B is true but (A\B) is "undefined" 
or "inapplicable" when />' is false. That is, 

I true if A and B are true, 
false if A is false and B is true, 
Undefined    if B is false. 

While De Finetti's 3-valuedness for conditionals is followed, the interpre- 
tation here of the third truth value as "undefined" or "inapplicable" differs 
markedly from that of De Finetti, who interprets the third truth value as 
"unknown" and so therefore as something similar or equivalent to a prob- 
ability value between 0 (false) and I (true). By contrast the "inapplicable" 
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interpretation is not a truth or falsity value; it is an indicator of irrelevance. 
This crucial difference in interpretation leads to a difference in operations. 

A conditional can be represented as a restricted (partially delined) indi- 
cator function, (A\B): 

[I if« £ A n B. 
(A\B)(w) =  J () if we A'DZJ. 

I Undefined    if cu € B' 

_   I A((o) if <o 6 B. 
I Undefined    if w £ B. 

if a) € B. (he latter can be expressed as 

(X) 

Since B(co) 

(9) (A\B)Uo) = | A(w) A B(w)    if a) e B, 
Undefined if to <£ B. 

So (A\B) is just the indicator function (A A B) restricted to the instances 
(o 6 B. 

For any conditional (A\B) with P{B) ^ 0. the conditional probability 
l'(A\B) is defined as usual to be P(A A B)/P(B). With this definition, 
the conditionals (A\B) have conditional probabilities that also satisfy the 
6 qualitative axioms of Suppes and Zanolti [12] or (13] for a conditional 
probability measure. 

5. EXTENDED OPERATIONS ON CONDITIONAL PROPOSITIONS 

We can expand the definition of a conditional to include cases in which 
A and B themselves are conditionals. To do this we need only decide on 
the definition of a conditional whose premise is undefined (V). the other 
cases being already determined. We will interpret an undefined condition 
to mean that there is no additional restriction imposed by it: 

\{A\B) | (C\D)](co) ----  \(A\B)(o>) | (C\D)((,»\ 

(A\B)«o)     if(C|D)M^0, 
Undefined    if (C\D){co) = 0 

(A\B)(co)     ifweCv/)'. 
Undefined    ifw^CvD' 
A if (o € 8A(Cv I)'). 

(10) 
Undefined    ifmg B A (C V D'). 

So 

(II)      (A\B) | (C\D) = (A | IKCv /)')). 
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With the definition of a conditional event, and using the extended defini- 
tions of the operations on functions, definitions can be developed for dis- 
junction (V), conjunction (A) and negation (') to go along with division (|) 
as follows. (Also see |4|). 

(12) 

[(A\B) v (C\D)](co) = (A\B)(a>) v (C\D)(co) 
_ | (A((o) A B(a>)) v (C(co) A D(a)))    if x e/JUZ), 

= 1 Undefined if.v <£ B U D. 

The latter expression is just the conditional ((A A B) V (C A D) | (B v D)). 
So 

(13)      (A\B)v (C\D) = ((AB v CD) \ (By /))). 

Here, juxtaposition of events A and B has replaced the conjunction nota- 
tion A A B. (A\B) v (C\D) is just (AB v CD) restricted to (B v D). 

For example, consider the experiment of rolling an ordinary 6-sided die 
once, and observing the number n showing up on the die. Suppose a wager 
is made that "if n is even then it will be a 2, or if n < 5 then /; < 4". 
Each of the two component conditionals is applicable on a different subset 
of outcomes of the die roll, and combining them with "or" results in a 
disjunction of two conditional propositions. 

By using (13) this disjunction is equivalent to a single conditional, with 
a conditional probability: (/; = 2 | n is even) V (n < 4 | n < 5) = 
((/; = 2) v(n < 4) | (n ^ 5)) = ({1,2,3} | {I, 2, 3, 4, 6}), which is the 
conditional event that if the roll is not 5 then it will be 1,2 or 3. This has 
conditional probability 3/5. By brute force examination of the 6 outcomes, 
this result can be seen to be consistent with intuition: Only a non-5 is 
applicable to at least one of the two component conditionals. So a "5" 
roll doesn't count. Given a non-5 roll the set {1, 2, 3} corresponds to win- 
ning the wager since "1" and "3" satisfy the second component while "2" 
satisfies the first component, but "4" and "6" satisfy neither component. 

Similarly, for conjunction (A) 

[{A\B) A (C\D)KW) 

= (A\B)(<O)/\(C\D){CD) 

(ABCD)Uo) U'coeB n/), 
(AB)Uo) if a) € B n D', 
(CD)Uo) U'coeB'DO, 
Undefined if co e B' f\ D' 
(ABCD)Uo) if (oeBCiD, 
(ABD')(u>) UcoeBni)', 
(B'CD)(co) if co eB'DD, 
Undefined if OJ e B' n D' 



OPERATING ON FUNCTIONS WITH VARIABLE DOMAINS 

(ABCD V ABD' A B'CD)(co)    if x £ B U D, 
Undefined if.v $ B U D. 

(14) 

So 

(15) (A\B) A(C\D) = (ABCD v ABD' v B'CD) | (/iv D). 

The negation operation is \{A\B)'\(o>) = [(A|fi)(<w)]' = A'(a>) if <w e tf. 
or undefined if a> 6 #'. So 

(16) (A\B)'= (A'\B). 

This algebra of uncertain conditional events or propositions has been ex- 
tensively developed in |2-7| including a theory of deduction for uncertain 
conditionals extending Boolean deduction. See [2. p. 2271 for an account 
of the Boolean properties retained and lost in the algebra of conditionals. 

Concerning the structure of this algebra of conditionals, the conjunction 
and disjunction operations are obviously commutative and idempotent. 
They are less obviously also associative. The inapplicable conditional (110) 
is the unique absolute unit since for all conditionals (x\y). (v| v) A (110) = 
(x\y) and {x\y) v (1|0) = (x\y). While there is a unique relative com- 
plement (a'\b) for each conditional (a\b) such that (a\b) v (a'\b) = (0|/>) 
and (a\b) A (a'\b) = (\\b), there are no absolute complements. Although 
(.v|v) A 0 = 0 and (x\y) v 1 = 1. it is also true that (.v|v) A 1 = xy 
and (A'| V) v 0 = xy. Neither distributive law holds in general. However, 
conjunction distributes over disjunction if and only if whenever the out- 
side conditional is true and one of the inside conditionals is false, then 
the other inside conditional is applicable. Similarly, disjunction distributes 
over conjunction if and only if whenever the outside conditional is false 
and one of the inside conditionals is true then the other inside conditional 
is applicable. (A proof of these facts about distributivity will be provided 
in a subsequent paper.) 

6. WEIGHTED AVERAGES 

Among the interesting properties of these operations are the following 
weighted average formulas (15, p. 1682|) for the probabilities of the com- 
pound conditionals of Equations (13) and (15): 

l>((A\B)v(C\D)) 

= P(B | B v D)P{A\B) 

(17) +P(D | B v D)P(C\D) - P(ABCD \ B V /)). 
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P((A\B) A(C\D)) 

= P(B | B v D)P(AD'\B) 

(18) + P(D | /»' v D)P(CB'\D) + P(ABCD | tf v D). 

The last term of (17) and (18) can be written as P(BD \ BvD)P(AC\BD). 
lithe truth of each conditional implies the inapplicability of the other 

conditional, that is if AB is a subset of D' and CD is a subset of B', as for 
example when the two conditions, />' and D, are disjoint, then both (17) 
and (18) reduce to: 

P((A\B)v(C\D)) 

= P((A\B)A(C\D)) 

(19) = P(B | B v D)P(A\B) + P(D \ B v D)P(C\D). 

In any case, without any extra assumptions the following logical equation 
always holds: 

(20) (A\B) v (C\D) = (B | B v D)(A\B) v (/) | B v D)(C\D). 

The right-hand side of (19) is a weighted average of the conditional prob- 
abilities of (A\B) and (C|D) where the weights are the probabilities of B 
and of D given either occurs. Because the conditional expectation of a re- 
stricted indicator function of an event A equals the conditional probability 
of A given the restriction B, this formula is equivalent to the one displayed 
by Suppes and Zanotti [ 12, p. 165] or [ 13, p. 13] for the expectation of the 
disjunction of restricted indicator functions. 

Note that because it is a weighted average the right-hand side of (19) 
will in general lie between P(A\B) and P(C\D) not above both. So dis- 
junction of conditional events is not always monotonic; P((A\B)v(C\D)) 
can be less than P(A\B). Similarly P((A\B) A (C\D)) can be greater than 
P(A\B). This is not strange because in general disjunction or conjunc- 
tion of a conditional (A\B) with another conditional (C\D) expands the 
context to (B v D), which allows for greater or lesser probability than 
before the application of the operation: If (C\D) is (0\Q) then disjunction 
with (A\B) yields AB, whose generally lower probability than P(A\B) is 
P(A\B)P(B). If (C|«)is(l|fi)then disjunction with (A\B) yields (\\Q), 
with probability 1. 

As a simple example of this non-monotonicity, let £2 — (1,2,3,4,5,6), 
the numbered faces of a 6-sided die thrown once, and let B = (2, 4, 6} and 
A = {2, 4). The conditional probability of rolling 2 or 4, given the roll 
is an even number, equals 2/3. That is, P(A\B) = 2/3. Now suppose 
also that C = {1} and /.) = {1,3,5}. So P(C\D) = 1/3. That is the 
probability of rolling a I, given the roll is an odd number, equals 1/3. Now 



OPERATING ON FUNCTIONS WITH VARIABLE DOMAINS l) 

what is the probability of "rolling a 2 or 4 given the roll is even, or rolling 
I given the roll is odd"? That is, P((A\B) v (C\D)) = ? The answer is 
P(AB v CD | B v D) = />{1,2,4}/P(even or odd) = 3/6 = 1/2. So 
here P((A\B) v (C\D)) is less than P{A\B) alone. 

7. EXTENDED OPERATIONS ON RANDOM VARIABLES 

Having extended the operations for functions with different domains and 
having applied them to exlend the operations for conditional propositions. 
il is possible to extend the operations on random variables and conditional 
random variables. A real-valued random variable X is a function from a 
sample space Q of a probability space (Q, <S, P) into Ihe real numbers 
such that for any real number x, the set of instances co e il for which 
X(a>) < x is a member of B, and so has a probability P\o> e Q. : 
X(oo) < x}. It follows that there is a probability thai X takes a value in 
any of the collection of Borel subsets of real numbers, consisting of those 
subsets thai are a countable collection of intersections or unions of the 
intervals (—oo, x) or their complements [x, co). for any real number x. Of 
course any interval (.v, v) of real numbers is a Borel set. 

As with functions, just doing division on random variables in general 
produces new ones with different domains whenever the divisor assumes 
the real value 0. Subsequently, using standard techniques, operating with 
this restricted variable will propagate its restricted domain. However using 
these extended operations, the domains of functions can be expanded as 
well as restricted. 

While the ordered pair (A\B) for events A. B. is defined and interpreted 
as "event A given event B is true", the corresponding construction (X\Y), 
where X and Y arc random variables, can not be immediately interpreted 
because "given Y is true" does nol make sense for real-valued random 
variables. The condition must be an event such as Y e B. the event that Y 
lakes a value in a Borel scl of real numbers B. 

8. CONDITIONAL RANDOM VARIABLES 

Let X, Y, W, Z be real-valued random variables on a probability space 
.9 = {n. <£. P) and let A, B, C, I),... be Borel sets on the real line. 
A conditional random variable (X | Y 6 B) is just the random variable A' 
restricted to the instances M for which Y(o») e B. Thai is, 

. X(w) \\'Y((o)eB, w-\/n 
(21)      (X \Y G B) =     ..   ... .     ; = X on )   '(B). 

Undefined    il YUo) £ B 
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If Y""'(/?) is empty, then (X \ Y e B) is completely undeiined, defined for 
no instances co. 

Although conditional probability distributions, conditional density func- 
tions and conditional expectations have standard definitions (See, for in- 
stance, [11]), the operations of summation, difference, multiplication and 
division on conditional random variables are all expressed in terms of prob- 
ability distributions rather than directly. But now these can follow directly 
from the extended definitions for operations on functions. 

9. OPERATIONS ON CONDITIONAL RANDOM VARIABLES 

Using the extended definitions for operations on real-valued functions, 
extended operations for random variables can be defined as follows: 

(22) 

\(X | Y eB) + (W\ Ze D)](a>) 

X{(o) + W(cu)    if Y((o) e B or Z(co) e D, 
Undefined if Y((o) $ B and Z(co) i D. 

Replacing "+" in (IK) with negation (—), or multiplication (*) yields the 
corresponding operations on the two conditional random variables. Divi- 
sion requires a separate formula due to possible division by zero: 

\{X | Y G B) -v- (W | Z G D)](co) 

X(co) ~ W(a>)    if Y{co) e B or Z(co) € D, 
Undefined if Y{<o) i B and Z(co) i D 

X(eo)l W{a>)    if Y(co) e B and 0 # Z((o) e D, 
X(co) if Y(co) e B and Z(co) i D, 
I / W(w) if Y(co) £ B and 0 # Z(co) e D, 
Undeiined        if Y(<o) <£ B and (Z(«) = 0 

or Z(M) <£ D). 

10. EXPECTATIONS AND CONDITIONAL EXPECTATIONS 

The expectation or average E(X) of a random variable X is defined to be 
just the sum of the values of X each weighted by its probability. Keep- 
ing to an elementary formulation for simplicity of exposition, assume the 
universe Q is finite or countable. Then 

(24)      /i(X) = J]X(w)P(w). 
men 
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If X and W are two random variables defined on ft Ihen easily E(X + 
W) = E(X) + E(W). 

By standard definitions, the conditional expectation E(X | Y e B). 
where Y is a random variable on Q and B is a Borel subset of real numbers. 
is defined to be 

E(X | Y 6 B) -  E(X oi\ Y~\B)) 

=  ^2x{(o)P{a> | Y](B)) 

= J^X(co)P(.wA Y-\B))/P{Y~\B)) 

(25) =  fl//J(K efiYJ   £   X(to)P(a>). 
Y(w)eB 

Note here that if P{Y~](B)) = 0, then the conditional expectation is unde- 
fined. Otherwise, P(co \ Y~l(B)) = 0 for w^K~'(B) and 
/J(w | Y-](B)) = P(co)/PY~l(B)) i'orco e K_,(i?). 

E(A' | r 6 8) is just the expectation of the random variable X re- 
stricted to the instances co for which Y(co) lakes a value in B. The individ- 
ual probabilities of these instances are just normalized by P(Y e B) so 
that their sum is 1 while they maintain the same relative probabilities with 
respect to each other as before the conditioning. 

Now it is well known (sec, for example. [11, p. 144]) that if Y~l(B) and 
7r\D) are disjoint and exhaustive of ft, that is, Y~l(B) A Z~l(D) = O 
and r'^vZ'HD) = ft and if X, Y, W and Z arc random variables 
on ft. then 

E((X \ Y e B) + (W \ Z e D)) 

(26) = E(X | Y e B)P{Y e B) -I- E(W | Z e D)/J(Z e /?). 

That is, the expectation of the sum of the conditional random variables is 
the sum of the conditional expectations weighted by the probabilities of the 
associated conditions. With the extended definitions of operations on ran- 
dom variables this result can be generalized to allow Y~l(B) and Z"1 (D) 
to be arbitrary events that may overlap and also may not be exhaustive 
of ft. 

First we extend the result to disjoint events K~'(/i) and Z~l(D) that 
do not necessarily exhaust ft. 

LEMMA 1. lfY~l(B) and Z~'(D) are disjoint events o/Q. and if X. Y, 
W and Z are random variables on ft. then 

E((X \Y e B) + (W \Z e D)) 
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= FAX | Y e B)P(K eB|re/WZeD) 

(27) + E(W | Z e l))P(Z e B | K € B v Z G D)). 

Proof. This result follows by using a new probability measure on just 
the part of Q inside (Y e Bv Z e D). So let Q be the probability measure 
defined by Q{A) = P(A \ Y e B V Z e D) for any event /I in fi. 
That Q is a probability measure on (Y e B v Z g /)) is easy to show 
since it is non-negative, Q(Y e B v Z 6 D) = P(Y G B v Z e D | 
FeBvZe D) = I, and finally, if /I and C are disjoint events in £2, 
then Q(A v C) = P(/l vC | r e BvZ e D) = P(A V C)/P(r e 
Bv Z £ D) = (P(A) + P(C))/P(Y e Bv Z e D) = Q{A) + Q(B). 
In addition, the conditional expectation EQ(X \ Y G B) with respect to 
Q of an arbitrary random variable X given arbitrary (Y e B) equals the 
conditional expectation Ep(X | Y e B) with respect to P because 

EQ(X \YeB) = Y^ X((o)Q(co A (Y e B) \ Y e B) 

= Y^X((o)Q((l>A(Y e fi))/<2(J/ e B) 

= ^X(f1))/
)(wA(l'e/())//)(re«) 

(28) = EP(X| KeB). 

So now computing 

EP((X | Y e B) + (W | Z e D)) 

= EQ((X | K € B) + (W | ZG D)) 

= E(X | K e B)Q(Y e B) + E(W | Z G D)Q(Z G D) 

= E(X | Y € B)/»(y e B | Y 6 /i v Z e D) 

(29) + E(W | Z G D)/'(Z eD\YeBvZe D). 

Thai completes the proof of Lemma I. • 

THEOREM 1.   If X, Y, \V and Z are real-valued random variables and 
B and I) are arbitrary Borel subsets of real numbers, then 

E((X | Y e B) + (W | Z € D)) 

= E(X | Y e B)P(Y G B | Y e B v Z e D) 

(30) + £(W | Z G D)P(Z G D | K e B v Z G D). 
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Proof. Let K = Y~\B) = [co e fi : Y(w) e B) and L = Z '(/>). 
So using the definition of extended summation tor conditional random 
variables, 

E((X | Y e B) + (W | Z <= £>)) 

= £((X | /O + (W | L)) = E(X + W | K V L) 

(31) = E((X | KX') + (X + W I KL) + (U; | K'D), 

where juxtaposition has again replaced conjunction (A) to shorten nota- 
tion. 

Since KL', KL and A" A arc disjoint, according to Lemma I. we can 
continue with 

E{(X | KL') + (X + W | KL) + (W \ K'D) 

= L(X | KL')P(KL' | AT V A) 

+ E(X+ W | KL)P(KI. | A' v L) 

(32) + E(W \ K'L)P(K'L\ KvL) 

= E(X | KL')P(KL' | K v A) 

+ £(X | KL)P{KL \ K v L) 

+ E(W | KL)P(KI. | A' v L)) 

(33) + E(W | K'L)P{K'L \ K v L) 

= E{{X | KL')P(KL' | K)/J(A' | A' v L) 

+ E(X | KL)P(KL | /O/^A | A' v L) 

+ £(W | KL)P(KL | L)/>(L | K v L) 

(34) + E(W | K'L)P{K'L | A)/J(A | K v L) 

= [E((X | KL')P{KL' | A') 

+ £(X | KL)P(KL | A-)|P(A' | A" V L) 

+ \E(W | KL)P(KL | £,) 

(35) + E(W | K'L)P(K'L \ L)]P(L | A V L) 

= £((* | A'//) + (X | KL))P(K | A' v L) 

(36) + E((W | KL) + (IV | K'L))P(L | A'v A), 

using Lemma 1 in reverse. So 

E((X \K) + (W | L)) 

(37) = /?(* | A')/,(A' | K v A) + £(W | L)I'(L | A v A). 

That is. 

£((X | Y e B) + (W | Z g D)) 
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= E(X | Y e B)P(Y e B | Y e B v Z € D) 

(38) + E(W | / e /)))/J(Z el)|fe/JvZeD). 

Thai completes the proof of Theorem I. D 

THEOREM 2. //' X, Y, W and Z are real-valued random variables and 
B and D are arbitrary Bore I subsets of real numbers, then the expectation 
of the product of the conditional random variables (X \ Y e B) and 

(W\Ze D) is given by 

E((X | Y € B)*(W | Z e D)) 
= FAX \ Y e B A Z <£ D)P(Y e B A Z <£ D \ 

Y € BvZeD) 
+ £(X *W \ Y e B AZ e D)P(Y e B AZ e D \ 
Y € 5 v Z eD) 
+ E(Z \Y <£ B AZ e D)PY £ B AZ e D\ 

(39) relivZe/)). 

P/w/ By the extended definition of products, 

(40) 

(X \Y e B)*(W \ Z e D) 
[ X if Y e Band Z £ D, 

X*W if Y 6 Band Z e D, 
IV if F ^ Band Z e D, 
Undefined    if K £ B and Z g D, 

where the domain of the product random variable has been broken into dis- 
joint events. Then by the definition of the conditional expectation (Equa- 
tion (25)), the expectation of this product random variable, E((X \ Y e 
B) * (W | Z e D)), is immediately expressed by Equation (39). This 
completes the proof of Theorem 2. • 

With a kind of independence, Equation (39) can be somewhat simplified. 
Recall that two random variables, X and Z, are independent if P(X G 
A and Z e C) = P(X e A)P(Z e C) for any events X € A and Z e C. 
Knowing the value taken by one variable does not change the probability 
of the other variable taking its values. 

DEFINITION 1 (Independence of Random Variables). Two random vari- 
ables X and W are independent if they are independent on each common 
domain. That is, X and W are independent if for any event // for which 
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both X and W are defined, X is conditionally independent of W given //. 
That is P(X £ A A W £ C \ H) = P(X e A \ H)P( W eC\ H). 

COROLLARY TO THEOREM 2. // A' and W are independent random 
variables then tinder the hypothesis of Theorem 2, 

E((X | Y G B)*(W | Z e D)) 

= E{X \Y e B A Z i D)P{Y € B AZ <£ D\ 

Y e BvZ e D) 

+ E(X \Y £ B AZ £ D)E(W | 

Y £ B AZ £ D)P(Y £ B AZ £ D\ 

Y £ B V Z £ D) 

+ E(W \Y i B AZ £ D)P(\Y $ B AZ £ D \ 

(41) Y £ Bv Z £ D). 

Proof. It is well known that the expectation of a product of independent 
random variables is the product of the expectations. Therefore E(X * W \ 
Y £ B A Z £ D) = E(X | Y £ B AZ e D)E(W \ Y £ B A Z e D). and 
the result follows by substitution into liquation (39). • 

EXAMPLE 1.     Consider a work force consisting of workers / =   1.2. 
...,/; with variable work output levels \V\, W2 VV„ and work shifts 
.s |. ,s'2 v„ respectively spanning the 24 hour day. To formulate the prob- 
lem in terms of random variables, let .v,(o>) = I if time co £ s-, and 0 
otherwise. Then the work level at time a> of worker i is (IV, | .v, (a>) = I). 
The sum of work output of all workers is ^(VK, | Si(co) = 1). and the 
average or expected work level over the day is /: (£,-( W; | .v,(o/) = I)) = 
Z,E(Wt \S,(a>)= \)P(s,(co)= 1)). 

EX AMPLE 2. Let B and C be the surveillance regions of two radars. R I 
and R2, and suppose X(w) is the error rale of missed detections by Rl at 
any place co £ B, and W(co) is the error rate by R2 at any place co £ C. 
X and W are undefined outside their respective domains B and C. Then 
using the definition of extended product, and assuming independence of 
detections by RI and R2, (X* W){a)) — X(a))W(co) is the combined error 
rate of missed detections by both radars over (B U('). This combined error 
rate is X on B n C, X * W on B n C, and W on fi' n C. 

Now suppose in addition that the detection rate of radar Rl is greatlj 
affected by fog F while interrogation radar R2 is most affected by the 
density D of communication on interrogation frequencies. Measuring log 
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as "heavy (/;), medium (w), or none (/?)" and communication traffic den- 
sity on a scale from 1 to 3, the error rate over (B U C) under conditions 
of heavy fog and communication density 2 is ((X * W) | (F = h) A 

(D = 2) A (B U C)) = ((A" * W) | (F = /i)(/) = 2)(B U C)). So the ex- 
pected combined error rate of the two radars given heavy fog and medium 
(2) communication density is E((X * W) \ (F = h)(D = 2)(B U C)). 

Now by the product definition 

((X * W) | (F = h)(D = 2){BUC)) 

= (X | (F = /;)(/) = 2)/iC") V (X * W | 

(42) (/•' = /;)(/) = 2)5C) v (W | (/•' = h)(D = 2)B'C). 

Since the detection errors for the two radars are assumed independent, the 
last equation simplifies to 

((X *W) | (F = li)(D = 2)(BUC)) 

= (X | (F = h)HC')v (X * W | 

(43) (F - h)(D = 2)BC) v (W \ (/) = 2)B'C). 

Let G = {F = h)(D = 2) (BUC). Then in terms of the average error rates 
of the individual radars, the average combined error rate given heavy fog 
and medium (2) communication density over the combined surveillance 
region (B U C) is 

E((X * W) | (/;' = h)(D = 2)(B U C)) 

= E(X | (F = li)BC')P((F = /?)«C) | G) 

+ £(X * W | (F = h)(D = 2)BC)P{{F = li)(D = 2)BC \ 

(44) G) + F(W | </) = 2)(BC'))P(D = 2)B'C \ G) 

= F(X | (F = h)(BC'))P((F = h)(BC) \ G) 

+ E(X | (F = h)(BC))E(W | 

(/) = 2)(BC))P((F = h)(D = 2)(BC) \ G) 

(45) + F(W \(D = 2)(B'C))P((D = 2)(B'C) \ G) 

using conditional independence again to split the expectation of X* W and 
to simplify the conditions. 

For simplicity, assume that />' U C is the whole universe and that fog 
is heavy (F = /;) everywhere and communication density is medium 
(D = 2) everywhere in BUC. So G — the whole universe £2, and P((F — 
h)BC) | G) = P(BC'). Similarly, P((F = h)(D = 2)BC \ G) = 
P(BC) and P({D = 2){B'C) \ G) = P(B'C). Thus 

E((X * W) \(F = h)(D = 2)(B U C)) 
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= E(X | (/•  = h){BC'))P(BC') 

+ E(X | {F = h)(BC))E(W | (D = 2){BC))P(BC) 

(46) + E(W | (/) = 2){B'C))P{B'C). 

If the error rate of radar RI is 0.04 in heavy log (/-' = /;) and the error rate 
of R2 is 0.02 in medium communication density (D — 2), the combined 
error rale under the conditions is 

E({X * W) \(F = h)(D = 2)(B U C)) 

(47) = (OM)P(BC') + (0.04) (0.02) P{BC) + (0.02) P(B'C). 

Note that the error rales are multiplied in the common surveillance region 
BC where the combined error rate is just 0.0008. 

II.  SUMMARY 

Extended definitions of function addition and other operations have been 
applied to conditional propositions and conditional events, and to condi- 
tional random variables. This allows direct manipulation of conditional 
events and of conditional random variables without resort to a probability 
or density function. General formulas for the expectation of the sum, and 
of the product, of two conditional random variables have been determined. 
Finally two examples illustrate the use of these formulas in practical situ- 
ations. 
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